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Chapter 1
Propositionalization of Multi-Relational Data

Inductive Logic Programming, Relational Learning and Relational Data Mining ad-
dress the task of learning models or patterns from multi-relational data. Unlike the
direct learning approaches to relational data developed in the Inductive Logic Pro-
gramming (e.g., learning in first order logic), this chapter addresses the proposition-
alization, i.e. the approach of first transforming a relational database into a single-
table representation, followed by a model/pattern construction step using a stan-
dard learning algorithm. The chapter outlines the propositionalization algorithms
for transforming relational data into propositional tabular data format. The chapter
is structured as follows. In Section 1.1, we present the problem of relational learn-
ing, including its definition, the main approaches, and an illustrative toy example
which we expand in further sections. Section 1.3 describes the propositionalization,
and briefly discusses feature construction approaches used in standard proposition-
alization algorithms. In Section 1.4 we present alternatives to the relational feature
construction, used in propositionalization, and in Section 1.5 we describe wordi-
fication, efficient and practically important propositionalization method, which we
exploit in the following chapters. Inspired by text mining, in wordification each orig-
inal instance is transformed into a-kind-of ‘document’ represented as a BOW vector
of weights of simple features, which can be interpreted as ‘words’. The ‘words’
constructed by wordification can be subsequently weighted by their TF-IDF value.
Section 1.6 presents an approach to training deep neural networks on propositional-
ized relational data, named Deep Relational Machines (DRM). We end the chapter
with Section 1.7 with illustration of selected approaches.

1.1 Relational learning

Standard machine learning and data mining algorithms induce models learned from
a given data table, where each example corresponds to a single row, i.e. a single
fixed-length attribute-value tuple. These learners, which can be referred to as propo-
sitional learners, thus use as input a propositional representation. However, the re-
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2 1 Propositionalization of Multi-Relational Data

striction to a single table poses a challenge for data that are naturally represented
in a relational representation, referred to as relational data or multi-relational data.
Relational learning problems cannot be directly represented with a tabular repre-
sentation without loss of information. These problems, which include the analysis
of complex structured data or complex networks, are naturally represented using
multiple relations.

As mentioned in ??, learning from relational data can be approached in two main
ways:

Multi-relational learning and inductive logic programming. These approaches,
referred to as relational learning (RL) [Quinlan, 1990], Inductive Logic Program-
ming (ILP) [Muggleton, 1992, Lavrač and Džeroski, 1994, Srinivasan, 2007],
Relational Data Mining (RDM) [Džeroski and Lavrač, 2001], Statistical Rela-
tional Learning (SRL) [Getoor, 2007], learn a relational model or a set of rela-
tional patterns directly on the multi-relational data.

Propositionalization. Propositionalization techniques transform a relational rep-
resentation into a propositional single-table representation by constructing com-
plex features [Lavrač et al., 1991, Kramer et al., 2000, Krogel et al., 2003,
Železný and Lavrač, 2006, Kuželka and Železný, 2011], and then use a proposi-
tional learner on the transformed data table.

The former strategy requires the design of dedicated algorithms for analyzing
data in a relational representation, while the latter strategy involves a data prepro-
cessing step, named propositionalization, enabling the user to transform the data
into a tabular data format and subsequently employ a full range of standard propo-
sitional learning algorithms on the transformed tabular data representation.

1.2 Relational data representation

After presenting some notational conventions used for describing rules in Sec-
tion 1.2.1, this section uses an illustrative example shown in Section 1.2.2 to present
two data description formats of particular interest: the Prolog format in Section 1.2.3
and the relational database format in Section 1.2.4, respectively.

1.2.1 Notational conventions for describing rules

Depending on the context, one can use three different notations for rules:

Explicit. This notation explicitly marks the condition part (IF), the connection of
the features in the conjunctive condition (via AND), and the conclusion (THEN).
It is the most readable form and will be mostly used in application-oriented parts,
where it is important to understand the semantics of the rule. A rule described in
this formalism is illustrated below.
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IF Shape = triangle
AND Color = red
AND Size = big
THEN Class = Positive

Formal. This notation is based on formal (propositional) logic. The implication
sign (←) is typically written from right to left (as in Prolog, see below), but it
may also appear in the other direction. It will be used if theoretical properties
of rule learning algorithms are discussed. A rule described in this formalism is
shown below.
Class = Positive ← Shape = triangle∧Color = red∧Size = big.

Prolog. This notation uses the Prolog syntax [Bratko, 1990] of first-order logic
used in ILP . It will mostly be used on examples involving relational learning. A
rule described in this formalism is shown below.
positive(X) :- shape(X,triangle),

color(X,red),
size(X,big).

1.2.2 Illustrative example

The illustrative example used in this chapter is Michalski’s East-West trains chal-
lenge [Michie et al., 1994b], illustrated in Figure 1.1, where the goal of the learned
model is to classify the direction of an unseen train.

The training data set consists of ten examples, i.e. ten trains t1, . . . , t10, where
the predicates eastbound and westbound indicate the class, i.e. whether the
train is eastbound or westbound.

eastbound: eastbound(t1), eastbound(t2), . . . , eastbound(t5)
westbound: westbound(t6), westbound(t7), . . . , westbound(t10)

We use this example to present the Prolog and the relational database represen-
tations in Section 1.2.3 and Section 1.2.4, respectively.

Fig. 1.1 The ten-train East-West trains challenge.
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1.2.3 Example using a logical representation

In a logical representation of the problem, each train is described by a set of ground
facts which describe the properties of the train and its cars. In the logic programming
notation used in programming language Prolog, the set of logical facts describing
the first train is given in Table 1.1.

In this example, each train consists of 2–4 cars. The cars have properties like
shape (rectangular, oval, u-shaped), length (long, short), number of
wheels (2, 3), type of roof (no roof, peaked, jagged), shape of load (circle,
triangle, rectangle), and number of loads (1–3).

For this small data set consisting of ten instances, a relational learner could in-
duce the following Prolog rule distinguishing between eastbound and westbound
trains, which states that “Train T is eastbound if it contains a short closed car”.

eastbound(T) :-
hasCar(T,C), clength(C,short),
not croof(C,no_roof).

Table 1.1 Prolog representation of the first train in the East-West trains challenge data set. The
predicate cnumber contains the number of cars for a given train, hasCar connects a car to a
given train, cshape, clength, croof, and cwheels define properties of a given car, hasLoad
associates a given load with the given car, and lshape and lnumber describe properties of a
given load.

eastbound(t1).

cnumber(t1,4).

hasCar(t1,c11). hasCar(t1,c12).
cshape(c11,rectangular). cshape(c12,rectangular).
clength(c11,long). clength(c12,short).
croof(c11,no_roof). croof(c12,peak).
cwheels(c11,2). cwheels(c12,2).
hasLoad(c11,l11). hasLoad(c12,l12).
lshape(l11,rectangular). lshape(l12,triangular).
lnumber(l11,3). lnumber(l12,1).

hasCar(t1,c13). hasCar(t1,c14).
cshape(c13,rectangualar). cshape(c14,rectangular).
clength(c13,long). clength(c14,short).
croof(c13,no_roof). croof(c14,no_roof).
cwheels(c13,3). cwheels(c14,2).
hasLoad(c13,l13). hasLoad(c14,l14).
lshape(l13,hexagonal). lshape(l14,circular).
lnumber(l13,1). lnumber(l14,1).
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1.2.4 Example using a relational database representation

In the considered East-West trains challenge, illustrated in Figure 1.1, instead of
data representation in the form of Prolog facts illustrated in Table 1.1, the data can
be stored in a relational database, consisting of three relational tables presented in
Table 1.2.

In a database terminology, a primary key of a table is a unique identifier of each
record. For example, trainID is the primary key for records in the TRAIN table,
while carID and loadID are primary keys in the CAR and LOAD tables, respec-
tively. A foreign key is a key used to link two tables together. A foreign key is a
column or a combination of columns whose values match a primary key in a dif-
ferent table. For example, the column train in the CAR table is its foreign key,
linking records in this table (i.e. cars) to their train, described in the TRAIN table.
The same is true for the car column in the LOAD table, where car plays a role of
the foreign key, linking loads to their cars.

In a relational database (RDB), the problem is given as a set of relations
{R1, . . . ,Rn} and a set of foreign-key connections between the relations denoted
by Ri → R j, where Ri has a foreign-key pointing to relation R j. The foreign-key
connections correspond to the relationships in an entity-relationship (ER) diagram.

Take the ER diagram, illustrated in Figure 1.2, which represents the data model
describing the structure of the data. It shows three relations appearing in the East-
West train challenge: the Train, Car and the Load relational tables. The boxes in
the ER diagram indicate entities, which are individuals or parts of individuals: the
Train entity is the individual, each Car is part of a train, and each Load is part
of a car. The ovals denote attributes of entities. The diamonds indicate relationships
between entities. There is a one-to-many relationship from Train to Car, indicat-

Table 1.2 A relational database representation of the East-West trains challenge data set.

TRAIN
trainID eastbound

t1 true
...

...
t5 true
t6 false
...

...

LOAD
loadID lshape lnumber car
l11 rectangular 3 c14
l12 triangular 1 c13
l13 hexagonal 1 c12
l14 circular 1 c11

...
...

...
...

CAR
carID cshape clength croof cwheels train
c11 rectangular long no roof 2 t1
c12 rectangular short peak 2 t1
c13 rectangular long no roof 3 t1
c14 rectangular short no roof 2 t1

...
...

...
...

...
...
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Fig. 1.2 Entity-relationship diagram for the East-West trains challenge, including a one-to-
many relationship hasCar from Train to Car (corresponding to the hasCar(T,C) predi-
cate), and a one-to-one relationship hasLoad between Car and Load (corresponding to the
hasLoad(C,L) predicate).

ing that each train can have an arbitrary number of cars but each car is contained in
exactly one train; and a one-to-one relationship between Car and Load, indicating
that each car has exactly one load and each load is part of exactly one car.

Entity-relationship diagrams can be used to choose a proper logical representa-
tion for the data. If we store the data in a relational database, the most obvious repre-
sentation is to have a separate table for each entity in the domain, with relationships
being expressed by foreign keys. This is not the only possibility: for instance, since
the relationship between Car and Load is one-to-one, both entities could be com-
bined in a single table, while entities linked by a one-to-many relationship cannot
be combined without either introducing significant redundancy or significant loss
of information, e.g., introduced through aggregate attributes. Note that one-to-many
relationships distinguish relational learning and Inductive Logic Programming from
propositional learning.

In propositionalization, we use the entity-relationship diagram to define types of
objects in the domain, where each entity corresponds to a distinct type. The data
model constitutes a language bias that can be used to restrict the hypothesis space
(i.e. the space of possible models) and guide the search for good models. In most
problems, only individuals and their parts exist as entities, which means that the
entity-relationship model has a tree-structure with the individual entity at the root
and only one-to-one or one-to-many relations in the downward direction (i.e. not
containing any many-to-many relations). Representations with this restriction are
called individual-centered representations [Flach and Lachiche, 1999a]. This re-
striction determines the language bias, constraining the relational database input to
propositionalization.
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1.3 Propositionalization

Propositionalization (a transformation of multi-relational data into a single table
format) cannot always be done without loss of information. It is a suitable approach
to relational learning when the problem at hand is individual-centered, i.e. when
learning occurs only at the level of the individual. Take as example a problem of
classifying authors into research fields given a citation network—in this case the
author is the individual and learning is performed at the author level (e.g., assigning
class labels to authors).

Accepting some loss of information, the propositionalization can be achieved by
using aggregation queries on the relational database in order to compress the data
into a single table format. Feature construction through aggregation queries has been
addressed in early work on propositionalization of Kramer et al. [2001] and Krogel
et al. [2003], which includes an extensive overviews of different feature construction
approaches. Alternative propositionalization approaches perform relational feature
construction.

Relational learners that directly use the multi-relational representations inter-
twine feature construction and model construction. In propositionalization, these
two steps are separated. The workload of finding good relational features is per-
formed by the propositionalization algorithm, while the work of combining these
features to produce a good model is offloaded to the propositional learner having
its own hypothesis language bias, e.g., decision trees, classification rules, SVM, or
more recently deep neural networks as we show in ??.

Propositionalization can be performed with many ML or DM tasks in mind: clas-
sification, association discovery, clustering, etc. In this chapter, we focus on the
classification task, as this is its most frequent application.

1.3.1 Relational feature construction

Most of the propositionalization algorithms, use ILP notation for features and rules.
Individual features are described by literals or conjunctions of literals. For example,
in the toy example of Section 1.2, the features describing the cars are either literals
(e.g., clength(C,short)), or conjunctions of literals (e.g., clength(C,short),
not croof(C,no_roof)).

Given the training examples and the background knowledge, an ILP learner can
induce the following two Prolog rules describing eastbound trains:

eastbound(T) :-
hasCar(T,C), clength(C,short),
not croof(C,no_roof).

eastbound(T) :-
hasCar(T,C1), clength(C1,short),
hasCar(T,C2), not croof(C2,no_roof).
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While the first rule (the same as in example in Section 1.2.3) expresses that trains
which have a short closed car are going East, the second rule states that trains which
have a short car and a (possibly different) closed car are going East. This rule is
more general than the first, covering all the instances covered by the first rule, and
in addition covering the instances where the short car is different from the closed
car. In the example, T is a global variable denoting any train, while C, C1 and C2
are existentially quantified local variables introduced in the rule body, denoting the
existence of a car with a certain property.

Note that in the terminology used in this chapter, we say that the body of the
first rule consists of a single relational feature, while the body of the second rule
contains two distinct relational features. Formally, a feature is defined as a minimal
set of literals such that no local (i.e. existential) variable occurs both inside and
outside that set. The main point of relational features is that they localize variable
sharing: the only variable which is shared among features is the global variable
occurring in the rule head. This can be made explicit by naming the features:

hasShortCar(T) :-
hasCar(T,C), clength(C,short).

hasClosedCar(T) :-
hasCar(T,C), not croof(C,no_roof).

Using these named features as background predicates, the second rule above can be
translated into a rule without local variables:

eastbound(T) :- hasShortCar(T), hasClosedCar(T).

This rule only refers to properties of trains, and hence could be expressed extension-
ally by a single table describing trains in terms of these properties. In the following,
we will see how we can automatically construct such relational features and the
corresponding propositional table.

As manual feature construction is complex and/or unfeasible, the task of prop-
ositionalization is to automate construction of relevant features which can act as
queries about each individual. The queries will be evaluated as true/false on the
original data when constructing a transformed data table, and form truth values of
constructed relational features. The actual goal of propositionalization is thus to
automatically generate a number of relevant features about an individual that the
learner can use to construct a model. In the machine learning literature, automated
feature construction is known as constructive induction. Propositionalization is thus
a form of constructive induction, since it involves changing the representation for
learning.

Formally, a relational feature expresses a property of an individual by a conjunc-
tion of predicates and properties, composed as follows:

1. there is exactly one free variable which will play the role of the global variable
in rules (e.g., for the trains example, the global variable T represents any train);
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2. each predicate introduces a new (existentially quantified) local variable, and uses
either the global variable or one of the local variables introduced by other predi-
cates (e.g., the predicate hasCar(T,C) introduces a new local variable Cwhich
stands for any car of train T);

3. properties do not introduce new variables (e.g., lshape(L,triangular)
stands for a triangular shape of a load, provided that the load variable L has been
already instantiated);

4. all variables are ‘consumed’, i.e. used either by a predicate or a property.

Actual relational feature construction can be restricted by parameters that define the
maximum number of literals constituting a feature, number of variables, and number
of occurrences of individual predicates. The following relational feature, denoting
the property of a train having a car with a triangular load, can be constructed for the
trains example, in the language bias allowing for up to 4 literals and 3 variables:

trainFeature42(T) :-
hasCar(T,C), hasLoad(C,L), lshape(L,triangular).

This example shows that a typical feature contains a chain of predicates, closed off
by one or more properties. Properties can also establish relations between parts of
the individual, e.g., the following feature expresses the property of ‘having a car
whose shape is the same as the shape of its load’:

trainFeature978(T) :-
hasCar(T,C),cshape(C,CShape),
hasLoad(C,L),lshape(L,LShape),
CShape = LShape.

1.3.2 Data transformation in propositionalization

In the trains classification task, a complete propositional representation of the prob-
lem would define a set of features, acting as queries qi ∈Q that return true (value 1)
or false (value 0) for a given train.

Transformed data table. We demonstrate data transformation on the East-West
trains challenge, using a relational feature construction algorithm RSD [Železný
and Lavrač, 2006]. We allow construction of features that use at most two predi-
cates that introduce local variables, and at most two predicates that describe prop-
erties. There are 190 such features, as illustrated in the data table in Table 1.3.
The direction attribute is not preprocessed; it is only appended to the transformed
feature vectors.

Output of propositional rule learning. In model construction, the learner ex-
ploits the features describing individual instances to construct a classification
model, e.g., a decision tree. Each node in the tree then contains a feature and has
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Table 1.3 An outline of the propositional form of the East-West trains challenge.

T f1(T) f2(T) f3(T) f4(T) . . . f190(T) eastbound(T)
t1 1 0 0 1 . . . 0 true

t2 1 1 0 1 . . . 1 true
...

...
...

...
...

...
...

...
t6 0 0 1 1 . . . 1 false

t7 1 0 0 0 . . . 0 false
...

...
...

...
...

...
...

...

two branches (true and false). To classify unseen individuals, the classifier evalu-
ates the features that are found in the decision tree nodes and follow the branches
according to their answers to arrive at a classification in a leaf of the tree.
If we use a propositional rule learning algorithm, its output is a set of rules
S, consisting of individual rules R. Rules are built from binary features f ∈ F ,
where F is the set of possible features. Taking Table 1.3 as input (using column
eastbound(T) as the class attribute), an attribute-value rule learner such as
CN2 [Clark and Niblett, 1989] can be used to induce if-then rules such as:

eastbound(T)=true ← f1(T)=1 ∧ f4(T)=1,
where f1(T) and f4(T) are two of the automatically generated features, and
∧ denotes the logical conjunction operator.

1.4 Alternatives to relational feature construction

In propositionalization, relational feature construction is the most common approach
to data transformation. LINUS [Lavrač et al., 1991] was one of the pioneering prop-
ositionalization approaches using automated relational feature construction. LINUS
was restricted to generation of features that do not allow recursion and existential lo-
cal variables, which means that the target relation cannot be many-to-many and self-
referencing. The second limitation is more serious: the queries cannot contain joins
(conjunctions of literals). SINUS [Lavrač and Flach, 2001], a descendant of LINUS,
incorporates more advanced feature construction techniques. The LINUS approach
had many followers, including relational subgroup discovery system RSD [Železný
and Lavrač, 2006].

Aggregation approaches to propositional feature construction are a popular alter-
native to relational feature construction. An aggregate can be viewed as a function
that maps from a set of records in a relational database to a single value. This adds
a constructed attribute to one of the tables in the relational database. If an aggre-
gation function considers values from only one table of a relational database, then
aggregation is equivalent to feature construction. For instance, in the database rep-
resentation of trains example in Table 1.2, one could add a binary aggregate column
to the CAR table by testing the predicate ‘#cwheels is odd’. Aggregation becomes



1.4 Alternatives to relational feature construction 11

more powerful if it involves more tables in the relational database. An example of a
first-order aggregate would be a column added to the TRAIN table which computes
the total number of wheels on all cars of the given train; this requires information
from the CAR table. A second-order aggregate (encompassing all tables) could add
a column to the TRAIN table representing its total number of wheels on cars con-
taining rectangular-shaped loads.

Below we outline a selection of propositionalization approaches, while an in-
terested reader can find extensive overviews of different feature construction ap-
proaches in the work of Kramer et al. [2001] and Krogel et al. [2003].

Relaggs [Krogel and Wrobel, 2001] stands for relational aggregation. It is a prop-
ositionalization approach that takes the input relational database schema as a ba-
sis for a declarative bias, using optimization techniques usually used in relational
databases (e.g., indexes). The approach employs aggregation functions in order
to summarize non-target relations with respect to the individuals in the target
table.

1BC [Flach and Lachiche, 1999b] uses the propositional naive Bayes classifier to
handle relational data. It first generates a set of first-order conditions and then
uses them as attributes in the naive Bayes classifier. The transformation, however,
is done in a dynamic manner, as opposed to standard propositionalization, which
is performed as a static step of data preprocessing. This approach is extended by
1BC2 [Lachiche and Flach, 2003], which allows distributions over sets, tuples,
and multisets, thus enabling the naive Bayes classifier to consider also structured
individuals.

Tertius [Flach and Lachiche, 2001] is a top-down rule discovery system, incor-
porating first-order clausal logic. The main idea is that no particular prediction
target is specified beforehand, hence Tertius can be seen as an ILP system that
learns rules in an unsupervised manner. Its relevance for this survey lies in the
fact that Tertius encompasses 1BC, i.e. relational data is handled through 1BC
transformation.

RSD [Železný and Lavrač, 2006] is a relational subgroup discovery algorithm
composed of two main steps: the propositionalization step and the (optional)
subgroup discovery step. The output of the propositionalization step can be used
also as input to other propositional learners. Using different biases, RSD effi-
ciently produces an exhaustive list of first-order features that comply with the
user-defined mode constraints, similar to those of Progol [Muggleton, 1995] and
Aleph [Srinivasan, 2007]. RSD features satisfy the connectivity requirement,
which imposes that no feature can be decomposed into a conjunction of two
or more features.

HiFi [Kuželka and Železný, 2008] is a propositionalization approach that con-
structs first-order features with hierarchical structure. Due to this feature prop-
erty, the algorithm performs the transformation in polynomial time of the max-
imum feature length. The resulting features are the shortest in their semantic
equivalence class. The algorithm performs much faster than RSD for longer fea-
tures.
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RelF [Kuželka and Železný, 2011] constructs a set of tree-like relational features
by combining smaller conjunctive blocks. The algorithm scales better than other
state-of-the-art propositionalization algorithms.

Cardinalization [Ahmed et al., 2015] is designed to handle not only categorical
but also numerical attributes in propositionalization. It handles a threshold on
numeric attribute values and a threshold on the number of objects simultane-
ously satisfying the condition on the attribute. Cardinalization can be seen as an
implicit form of discretization.

CARAF [Charnay et al., 2015] aggregates base features into complex compounds,
similarly to Relaggs. While Relaggs tackles overfitting problem by restricting it-
self to relatively simple aggregates, CARAF incorporates more complex aggre-
gates into a random forest, which ameliorates the overfitting effect.

Aleph [Srinivasan, 2007] is actually an ILP toolkit with many modes of function-
ality: learning of theories, feature construction, incremental learning, etc. Aleph
uses mode declarations to define the syntactic bias. Input relations are Prolog
clauses, defined either extensionally or intensionally. Aleph’s feature construc-
tion functionality also means that it is a propositionalization approach.

Wordification [Perovšek et al., 2013, Perovšek et al., 2015] is a propositionaliza-
tion method inspired by text mining that can be viewed as a transformation of a
relational database into a corpus of text documents. The distinguishing property
of Wordification is its efficiency when used on large relational data sets and the
potential for using text mining approaches on the transformed propositional data.
This approach is described in more detail in Section 1.5 below.

1.5 Wordification: Unfolding relational data into BoW vectors

Inspired by the text mining, this section presents a propositionalization approach to
relational data mining, called wordification. Most other propositionalization tech-
niques first construct complex relational features that act as attributes in the result-
ing tabular data representation. Contrary to that, the wordification generates much
simpler features with the aim of achieving greater scalability.

1.5.1 Outline of the wordification approach

This section provides an informal description of the wordification approach, illus-
trated in Figure 1.3. The input to the wordification is a relational database, and the
output is a set of feature vectors, which can be viewed as a corpus of text documents
represented in the BoW vector format. Each text document represents an individual
entry of the main data table. A document is described by a set of words (or fea-
tures), where a word is constructed as a combination of the table name, name of the
attribute and its discrete (or discretized) value (see line 4 in Algorithm 2):
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Fig. 1.3 The transformation from a relational database representation into the BoW feature vector
representation. For each individual entry of the main table, one BoW vector di containing weights
of ‘words’ is constructed. Here ‘words’ correspond to the features (attribute values) of the main
table and the related tables.

[table name] [attribute name] [value]. (1.1)

Such constructs are called word-items or simply words in the rest of the chapter.
Note that values of every non-discrete attribute need to be discretized beforehand
in order to be able to represent them as word-items. For each individual, the word-
items are first generated for the main table and then for each entry from the related
tables, and finally joined together according to the relational schema of the database
(see line 10 in Algorithm 2).

In the described transformation there is some loss of information as a conse-
quence of building the document for each instance (each individual row in the main
table) by concatenating all word-items from multiple instances (rows) of the con-
nected tables into a single document. To overcome this loss, n-grams of word-items,
constructed as conjunctions of several word-items, can also be concatenated with the
document. These concatenations of elementary word-items represent conjunctions
of features cooccurring in individual instances (rows of joined tables). Technically,
the n-gram construction takes every combination of length k of word-items from
the set of all word-items corresponding to the given individual. The n-grams are
concatenated as follows:

[word1] [word2] ... [wordk], (1.2)

where 1≤ k≤ n and each word-item is a combination of the table name, name of the
attribute and its discrete value. The instances are concatenated in a predetermined
order, each using the “ ” concatenation symbol.

In the rest of this section, we refer to individuals as documents, to features as
words, and to the resulting representation as the BoW representation. For a given
word wi in document d j from corpus D, the TF-IDF measure is computed using
Equation ?? on page ??, where a word with a high TF-IDF value will be considered
important for the given document provided that it is frequent within this document
and not frequent in the entire document corpus. Consequently, the weight of a word
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provides an indication of how relevant is this feature for the given individual. The
TF-IDF weights can then be used either for filtering out words with low importance
or using them directly by a propositional learner.

We present further details of the wordification methodology by first presenting
an illustrative example, followed by the presentation of the actual Wordification
algorithm.

1.5.2 Illustrative example

The wordification approach is illustrated on a modified and substantially simpli-
fied version of the East-West trains challenge shown in Table 1.4, where we have
only one East-bound and one West-bound train, each with just two cars with certain
properties.

Table 1.4 Simplified East-West trains challenge to illustrate wordification.

TRAIN
trainID eastbound

t1 eastbound
t5 westbound

CAR
carID shape roof wheels train
c11 rectangle none 2 t1
c12 rectangle peaked 3 t1
c51 rectangle none 2 t5
c52 hexagon flat 2 t5

In this simplified problem, the TRAIN table is the main table and the trains are the
instances. We want to learn a classifier to determine the direction of an unseen train.
For this purpose, the direction attribute is not pre-processed and is only appended to
the resulting feature vector (list of words).

The underlying idea of wordification is to consider an individual (a row in the
table) as a ‘document’ (or an item set) and individual attribute values as ‘words’
(or items) in this document (item set). In addition to simple ‘words’, more complex
‘words’ can be constructed by concatenating two/three ‘words’ into a bigram/tri-
gram. In the example, for two trains t1 and t5, the corresponding documents (one
for each train) are generated, as shown in Table 1.5. After this, the documents are
transformed into the BoW representation by first computing the attribute values
shown in Table 1.6, and then calculating the TF-IDF values for each word of each
document with the class attribute column appended to the transformed BoW table,
as shown in Table 1.7. For simplicity, only unigrams and bigrams are shown in this
example. After this textually inspired transformation, traditional machine learning
methods can be employed on the transformed data set shown in Table 1.7.
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Table 1.5 The data set from Table 1.4 in the symbolic BoW document representation.
t1: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,
car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle,
car_wheels_3, car_roof_peaked__car_shape_rectangle,
car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3],
eastbound
...

t5: [car_roof_none, car_shape_rectangle, car_wheels_2,
car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,
car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon,
car_wheels_2, car_roof_flat__car_shape_hexagon,
car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2],
westbound
...

Table 1.6 The basic BoW representation of database from Table 1.4 and its symbolic representa-
tion from Table 1.5 using the wordification approach. It consists the counts of ‘words’ appearing
in the ‘documents’. This is an intermediate step and the values are further weighted with TF-IDF
scheme as shown in Table 1.7.

ID car shape
rectangle

car roof
peaked

car wheels 3 car roof peaked
car shape rectangle

car shape rectangle
car wheels 3

. . . Class

t1 2 1 1 1 1 . . . eastbound
t5 1 0 0 0 0 . . . westbound

Table 1.7 The transformed database from Table 1.4 using the wordification approach. It consists
of TF-IDF values, which are zero if the ‘word’ appears in all the ‘documents’. This final output
can be given as an input to a propositional classifier.

ID car shape
rectangle

car roof
peaked

car wheels 3 car roof peaked
car shape rectangle

car shape rectangle
car wheels 3

. . . Class

t1 0.000 0.693 0.693 0.693 0.693 . . . eastbound
t5 0.000 0.000 0.000 0.000 0.000 . . . westbound

1.5.3 Wordification algorithm

The overall Wordification algorithm consists of two main transformation steps, pre-
sented in Algorithm 1 and Algorithm 2.

The algorithm starts recursive document construction on the instances of the
main table (lines 4–9 in Algorithm 1). It first creates word-items for the attributes
of the target table (lines 3–7 in Algorithm 2), followed by concatenations of the
word-items and results of the recursive search through examples of the connecting
tables (lines 9–17 in Algorithm 2). As this document construction step is done in-
dependently for each example of the main table, this allows simultaneous search
along the tree of connected tables. Lines 4–9 in Algorithm 1 can be run in parallel,
which allows for a significant speed-up. A common obstacle in parallel computing
is memory synchronization between different subtasks, which is not problematic
here as concurrent processes only need to share a cached list of subtrees. This list
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1 wordification (T, p, k)
Input : target table T , pruning percentage p, maximal number of word-items per

word k
Output : Propositionalized table R with TF-IDF values, corpus of documents D

2 D← []
3 W ← /0 // vocabulary set

4 for ex ∈ T do
5 // entries of the target table
6 d←wordify(T,ex,k) // construct the document
7 D← D+[d] // append document to the corpus
8 W ←W ∪ keys(d) // extend the vocabulary
9 end

10 W ←prune(W, p) // optional step
11 return [ calculateTFIDFs(D,W),D]

Algorithm 1: Pseudocode of wordification algorithm.

1 wordify (T, ex, k)
Input : table T , example ex from table T , maximal number of word-items per

word k
Output : document collection d

2 d←{} // hash table with the default size of 0
3 for i← 1 to k do // for all word-item lengths
4 for comb ∈ attrCombs(ex,k) do // attr. combinations of length k
5 d[word(comb)]← d[word(comb)]+1
6 end
7 end

8 // for every connected table through an example
9 for secTable ∈ connectedTables(T) do

10 for secEx ∈ secTable do
11 if primaryKeyValue(ex)=foreignKeyValue(secEx) then
12 for (word,count) ∈ wordify(secTable,secEx,k) do
13 d[word]← d[word]+ count
14 end
15 end
16 end
17 end
18 return d

Algorithm 2: Psudo code of creation of one document in wordification.

stores the results of subtree word concatenations in order to visit every subtree only
once.

As wordification can produce a large number of features (words), especially
when the maximal number of n-grams per word-items is large, we perform prun-
ing of words that occur in less than a predefined percentage (5% on default) of
documents. This reduces the size of trees by removing sections of the tree that is
expected to provide little power for instance classification.
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The constructed features are simple, and as we do not explicitly use existential
variables in the new features (words), we instead rely on the TF-IDF measure to
implicitly capture the importance of a word for a given individual. In the context of
text mining, TF-IDF value reflects how representative is a certain feature (word) for
a given individual (document).

1.5.4 Improved efficiency of Wordification

This section presents an implementation of the Wordification algorithm, developed
with the aim to improve its scalability, achieved by the following design decisions
[Lavrač et al., 2020]:

1. The input no longer needs to be hosted in a relational database. The algorithm
supports SQL conventions, as commonly used in the ILP community1. This mod-
ification renders the method completely local, enabling offline execution without
additional overhead. Such setting also offers easier parallelism across computing
clusters.

2. The algorithm is implemented in Python 3 with minimum dependencies for com-
putationally more intense parts, such as the Scikit-learn [Pedregosa et al., 2011],
Pandas, and Numpy libraries [Van Der Walt et al., 2011]. All database operations
are implemented as array queries, filters or similar.

3. As shown by Perovšek et al. [2015], Wordification’s caveat is extensive sampling
of (all) tables. We relax this constraint to close (up to second order) foreign key
neighborhood, notably speeding up the relational item sampling part, but with
some loss in terms of relational item diversity. For larger databases, minimum
relational item frequency can be specified, constraining potentially noisy parts of
the feature space.

One of the original Wordification’s most apparent problems is its spatial com-
plexity. This issue is addressed as follows:

1. Relational items are hashed for minimal spatial overhead during sampling.
2. During construction of the final representation, a sparse matrix is filled based on

relational item occurrence.
3. The matrix is serialized directly into list-like structures.
4. Only the final representation is stored as a low-dimensional (e.g., 32) dense ma-

trix.

This implementation of wordification is used in two pipelines unifying proposi-
tionalization and embeddings, presented in ??, where in ?? we first present entity
embeddings, a more general methodology capable of supervised, as well as unsuper-
vised embeddings of many entities, including texts and knowledge graphs. Based on
that, we present in ?? two unifying methods, PropDRM and PropStar, which com-
bine propositionalization and embeddings and benefit from the advantages of both,

1 https://relational.fit.cvut.cz/

https://relational.fit.cvut.cz/
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i.e. they capture relational information through propositionalization and apply deep
neural networks to obtain its dense embeddings. Both of these two pipelines use the
version of the Wordification algorithm presented in this section.

1.6 Deep Relational Machines

Deep neural networks are effective learners in numeric space, capable of construct-
ing intermediate knowledge concepts and thereby improving the semantics of base-
line input representations. Training deep neural networks on propositionalized rela-
tional data wes explored by Srinivasan et al. [2019], following the work of Lodhi
[2013], where Deep Relational Machines (DRMs) were first introduced. In Lodhi’s
work, the DRMs used bodies of the prolog sentences (first order Horn clauses) as
inputs to the restricted Boltzmann machines. For example, consider the following
propositional representation of five instances (rows), where complex features are
comprised of conjuncts of features fi, as illustrated in Figure 1.4.

In
st

an
ce

f 1
∧

f 2
f 3
∧

f 2
f 1
∧

f 3
f 5
∧

f 2
f 4
∧

f 1
∧

f 5
C

la
ss

1 [ 1 1 1 1 0 ] +
2 [ 0 1 0 0 1 ] +
3 [ 0 0 1 0 0 ] -
4 [ 0 1 0 0 1 ] -
5 [ 1 0 0 0 1 ] -

Fig. 1.4 An example input to a deep relational machine that operates on the instance level.

The propositionalized data set P is usually a sparse matrix, which can represent
additional challenge for neural networks. The DRMs proposed by Lodhi [2013]
were used for prediction of protein folding properties, as well as mutagenicity as-
sessment of small molecules. This approach used feature selection with information
theoretic measures such as information gain as the sparse matrix resulting from the
propositionalization was not suitable as an input to the neural network. The initial
studies regarding DRMs explored how deep neural networks could be used as an
extension of relational learning.

Recently, promising results were demonstrated in the domain of molecule clas-
sification [Dash et al., 2018] using the ILP learner Aleph in its propositionalization
mode for feature construction. After obtaining propositional representation of data,
the obtained data table was fed into a neural network to predict the target class (e.g.,
a molecule’s activity). Again, sparsity and size of the propositionalized representa-
tion was a problem for deep neural networks.
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Concerning the interpretability of DRMs, the work of Srinivasan et al. [2019]
proposes a logical approximation of the LIME explanation method [Ribeiro et al.,
2016] and shows how it can be efficiently computed.

In summary, DRMs address the following issues at the intersection of deep learn-
ing and relational learning:

• DRMs demonstrated that deep learning on propositionalized relational structures
is a sensible approach to relational learning.

• Their input is comprised of logical conjuncts, offering the opportunity to obtain
human-understandable explanations.

• DRMs were successfully employed for classification and regression.
• Ideas from the area of representation learning have only recently been explored

in the relational context [Dumančić et al., 2018], indicating there are possible
improvements both in terms of execution speed, as well as more informative
feature construction on the symbolic level.

Development of DRMs that are efficient with respect to both space and time is an
ongoing research effort. Building on the ideas of DRMs, a variant of this approach,
called PropDRM [Lavrač et al., 2020] is capable of learning directly from large,
sparse matrices that are returned from Wordification of a given relational database,
rather than using feature selection or the output of Aleph’s feature construction ap-
proach. An efficient implementation of PropDRM is presented in ??.

1.7 Implementation and reuse

This section demonstrates the wordification algorithm and introduces the python-
rdm Python package which simplifies relational data mining by integrating wrappers
for several RDM algorithms.

1.7.1 Wordification

The wordification approach is demonstrated on the East-West trains challenge [Michie
et al., 1994a]. The data is provided in the CSV (comma separated values) format,
where files contain additional headers defining relations between tables (i.e. their
primary and foreign keys). We demonstrate different settings of the the wordifica-
tion algorithm. The resulting features are ranked, selected and used with a a deci-
sion tree learner to build a classifier. The Jupyter notebook with code is available
in the book repository: https://github.com/vpodpecan/representation learning/blob/
master/Chapter4/wordification.ipynb.

https://github.com/vpodpecan/representation_learning/blob/master/Chapter4/wordification.ipynb
https://github.com/vpodpecan/representation_learning/blob/master/Chapter4/wordification.ipynb
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1.7.2 The python-rdm package

While several relational data mining (RDM) tools are open source, they are not
easily accessible for machine learning users working in this area. The python-rdm2

package is a collection of wrappers for RDM algorithm implementations that aims
to remedy this problem. As the input data, the package supports several relational
databases, such as MySQL, PostgreSQL, and SQLite, as well as plain CSV text files.
Its complete documentation is available online3. Some properties of the algorithms
supported by python-rdm are compared in Table 1.8.

Table 1.8 A brief comparison of propositionalization approaches, implemented in the python-rdm
package.

Approach Property
Numerical Complete Non-redundant Recursive

RSD - X X -
RelF - X X -
HiFi - - X -
LINUS - - - -
DINUS - - - -
SINUS - - - -
RELAGGS X - - -
Wordification - X X -
Stochastic X - - -
Aleph - - - X
Progol - - - X
Safarii X - - -

Our demonstration invokes the RSD relational data mining system to obtain tab-
ular representation of the East-West trains challenge [Michie et al., 1994b] where
data is stored in a remote MySQL database. Once the data is converted into the
appropriate format, the code invokes RSD and induces features. The rest of the
notebook is similar to the Wordification example in Section 1.7.1. The Jupyter note-
book with code is available in the book repository: https://github.com/vpodpecan/
representation learning/blob/master/Chapter4/python-rdm.ipynb.
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approach to relational data mining. In Proceedings of the International Confer-
ence on Discovery Science, pages 141–154. Springer, 2013.
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